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The amplitude and phase shif't of static-pressure variations i n  a 

supersonic diffuser w e r e  investigated f o r  separate osc i l la t ion  of both 
the  spike and bypass. 
diff'user i n  combination with a 534 engine and three  cold-pipe configura- 
t ions  of different length at  Mach numbers of 1.8 and 2.0. 
pressure variations w e r e  measured in the  region of t he  terminal shock, 
near t he  bypass ports in t h e  main duct, and near t h e  choke point i n  the  
cold pipes. 
osc i l la t ion  is  derived and is  shown t o  agree reasonably w e l l  with t h e  

Dynamic data are presented f o r  t he  supersonic 

Stat ic-  

A simple method f o r  predicting the  dynamics f o r  bypass 
~ 

data. 

INTRODUCTICN 

High-perf ormance a i r c ra f t  with variable-inlet  features  will require 
fast -acting closed-loop inlet controls, par t icular ly  when t h e  i n l e t  has 
in te rna l  contraction. Successful design of these controls requires a 
knowledge of t h e  dynamic behavior of the supersonic i n l e t  i n  combination 
with a turbojet  engine, for  which some data are presented i n  reference 1. 
These turbojet  dynamics are i n  many respects similar t o  the  dynamics of 
a supersonic i n l e t  i n  combination with a ramjet engine, f o r  which experi- 
mental data  are given i n  reference 2. 
ramjet dynamics, based on separating the  dynamics in to  a transport  time 
and a linear system obtained from a lumped-parameter analysis, i s  pre- 
sented i n  reference 3. 
dynamics i s  also discussed i n  reference 4. 

A method f o r  t h e  prediction of 

"he lumped-parameter analysis of gas-flow-system 

The purpose of t h i s  investigation w a s  t o  determine the  response of 
t he  aerodynamic portion of a closed control loop fo r  a Mach 2.0 i n l e t .  
This dynamic response w a s  obtained by sinusoidally osc i l la t ing  the ele- 
ment t o  be controlled, i n  t h i s  case the bypass or spike, a t  frequencies 
up t o  22 cycles per second and measuring the  response of possible con- 
t r o l  pressures at locations throughout t he  i n l e t .  To determine the 

W i t  l e ,  Unclassified. 
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effect of the  volume between the terminal shock and the  choked ex i t ,  the  
i n l e t  was equipped with a cold pipe successively choked at one of th ree  
separate s ta t ions t o  give a volume change of 2 t o  1. Since there  i s  a 
close coupling of the  airflow i n  an engine and i ts  i n l e t  duct, as indi-  
cated by the  resu l t s  of reference 5, an inlet-engine configuration was 
investigated, and i ts  dynamics were compared with those of t he  cold-pipe 
configurations. 

A simple method (similar t o  the  method of ref. 3 )  fo r  predicting 
the  response of s t a t i c  pressure within the i n l e t  t o  bypass osc i l la t ion  
is  derived and compared with the  experimental data. 

APPARATUS AND PROCEDURE 

The investigation was conducted a t  Mach numbers of 1.8 and 2.0 a t  
a Reynolds number of about 5.3x1O6 per foot i n  the  8- by 6-foot wind 
tunnel. 
performance of the  in l e t  i n  conjunction with t h e  534 engine and the  
longest cold pipe i s  reported i n  reference 6. A schematic diagram of 
the engine configuration used herein i s  presented i n  figure l ( a ) ,  and 
the  cold-pipe configurations are  shown i n  f igure l (b ) .  
pipe was choked by a parabolic plug, while t he  choke points f o r  t he  short 
and intermediate cold pipes consisted of a plate  or i f ice  a t  s ta t ions 83 
and 123.5,  respectively, i n  conjunction with a movable conical plug. 
The area distribution of the i n l e t  and the cold pipe i s  shown i n  f igure 2 .  

A detailed description of t he  in l e t  as w e l l  as the  steady-state 

The longest cold 

The bypass a i r  l e f t  the main duct i n  s l o t s  along the  outer wall and 
entered an annular volume of 4.58 cubic f ee t  ( f ig .  1). 
was controlled by a door i n  the  nacelle outer skin tha t  regulated the  
flow between the  annular volume and the  free stream. 
in l e t  centerbody were both hydraulically actuated and were sinusoidally 
osci l la ted at frequencies up t o  22 cycles per second. 

The bypass flow 

The bypass and the 

The responses of the  normal shock and pressures within the  i n l e t  
t o  the  separate osc i l la t ion  of the  bypass and spike w e r e  measured with 
wall s tatic or i f ices  located i n  the  region of the  normal shock, a t  the  
bypass s l o t s  i n  the  supersonic diffuser, and near the  choke point 
( f ig .  1). 
fe ren t i a l  pressure transducers t ha t  were referenced t o  a constant pres- 
sure. 
pressure transducers and the  bypass and spike slidewire posit ion indi-  
cators. 
system f r o m  the  s t a t i c  o r i f i ce  through the  recorder were negligible t o  
60 cycles per second. 

These s t a t i c  or i f ices  were attached by short tubes t o  d i f -  

An opt ica l  oscillograph w a s  used t o  record the  outputs of t h e  

The phase s h i f t  and change i n  amplitude r a t i o  of the  measuring 
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The bypass and spike were oscil lated over a ser ies  of seven or eight 
frequencies from 1 t o  22 cycles per second. To determine the  effect  of 
various i n l e t  conditions on the  dynamics, the  bypass w a s  osci l la ted f o r  
combinations of spike-position parameter 02 of 42.6' and 4 5 O ,  Mach 
numbers of 1.8 and 2.0, angles of attack of 0' and 6O, and bypass mean 
posit ions of 0.5 and 0.3 open. 
The spike was osci l la ted fo r  the  same conditions except t ha t  t he  bypass 
was e i ther  open or  closed. ' 

( A l l  symbols are defined i n  appendix A.) 

The phase s h i f t  between the  bypass position and the  s t a t i c  or i f ices  
was measured peak t o  nul l  and null t o  peak ( f ig .  3) because posit ive d is -  
placement of the  bypass on the  t r ace  produced negative pressure signal 
movement. The value of phase shift plotted i n  the  l a t e r  figures i s  an 
average of three or four pairs  of readings. 

A plot of t he  normal-shock or i f ice  pressure against bypass position 
i s  shown i n  figure 4. 
bypass was slowly opened and closed. As can be seen i n  the  figure, t h e  
s ignal  i s  nonlinear and includes some hysteresis, a t  l eas t  when recorded 
i n  the  preceding manner. This causes the  or i f ice-s ignal  amplitude r a t i o  
(amplitude divided by the  amplitude at zero frequency) t o  be a function 
of bypass mean position and oscil lation amplitude. Because of t e s t  con- 
dit ions,  t he  mean position and amplitude were not held constant f o r  each 
ser ies  of frequencies, s o  t ha t  determination of the  amplitude r a t i o  
became d i f f i cu l t .  Therefore, a m e a n  probe curve was determined (shown 
i n  f ig .  4), and an equivalent bypass-oscillation amplitude was determined 
from the  signal amplitude. The r a t i o  of t h i s  equivalent amplitude t o  
the  actual  bypass amplitude is presented as the amplitude r a t io .  

The plot w a s  obtained from a t race  taken while t h e  

The normal-shock or i f ice  signal was more l inear  fo r  spike movement 
(not shown) than for  bypass movement. 
t ion,  t he  response of the o r i f i ce  was assumed t o  be l inear ,  and the  am- 
pli tude r a t i o  a t  the  lowest frequency for  which there  were good data was  
assumed t o  be 1. 

Therefore, for  ease of calcula- 

RESULTS AND DISCUSS103 

Bypass Oscillation 

The dynamic data for  bypass osci l la t ion are shown i n  figure 5. The 
responses of s t a t i c  pressures i n  the  normal-shock region of t h e  long and 
intermediate pipes ( f igs .  5 (a)  and ( a ) )  are  very s i m i l a r  i n  general 
trends of amplitude r a t i o  and phase sh i f t .  
increase i n  phase sh i f t  with increasing frequency suggests t ha t  the  sys- 
tem might be represented by a dead time i n  combination with ei ther  a 
f i r s t -order  system or a highly damped higher order system. 

The gradual and continuous 



The system used i n  t h i s  report for  prediction of dynamics consists 
of a dead time, determined from pressure-wave t rave l ,  i n  s e r i e s  w i t h  a 
f irst-order system, where the  time constant is  based on the  a i r  storage 
capacity of the configuration. 
were calculated by the  method used i n  reference 3. 
t he  effects of  shock dynamics were not s ignif icant  fo r  t he  i n l e t  of t h i s  
report  at frequencies below 60 cycles per second, they were not included 
i n  the  derivation. 
order system f o r  a cold-pipe configuration. Also included i n  appendix B 
is  an extension of the system t o  include the  engine configuration by 
means of correcting the volumes within the  engine t o  diffuser-exit  
conditions. 

The dynamics of terminal-shock motion 
Because, however, 

Appendix B describes t h e  derivation of the  first- 

"he predicted phase s h i f t  f i t s  the  long and intermediate cold-pipe 
data quite well i n  t he  region from 1 t o  10 cycles per second (f igs .  5 (a )  
and ( a ) ) .  
ference, approximately 400 t o  500, occurs between the  normal-shock-region 
phase-shift data of the short-pipe configuration and tha t  of the  longer 
cold-pipe configurations. The method of appendix B f a i l s  t o  predict 
t h i s  much difference, and therefore the  predicted phase s h i f t  i n  t h e  
normal-shock region of t he  short -pipe configuration ( f i g .  5( e )  ) i s  
about 40° higher than the  average of the  data. 
cycles per second, the  average phase s h i f t  i n  t he  normal-shock region 
f o r  a l l  three cold-pipe configurations i s  within about &loo of t he  130° 
phase sh i f t .  The predicted phase s h i f t s  at  th i s  frequency, consisting 
of t he  phase s h i f t  due t o  dead time and about 70' t o  80' of phase s h i f t  
from the  lumped-parameter analysis, gave f a i r  agreement fo r  a l l  th ree  
configurations, the  prediction being approximately 30° high fo r  the  
long pipe and 20° high f o r  the  other two cold-pipe configurations. 
t he  bypass and choke-point measuring s ta t ions,  the agreement of t he  pre- 
diction and the data follows the trends i n  the  normal-shock region 
( f igs .  5(b),  (c ) ,  and ( f ) ) .  

It i s  i n  t h i s  lower frequency range tha t  the greatest  d i f -  

A t  approximately 20 

A t  

, 

Above approximately 9 cycles per second, the  predicted amplitude 
r a t i o s  are about 30 percent less  than the  long and intermediate t e s t  
values. 
of t he  short pipe a re  so badly scattered, t he  predicted amplitude r a t i o  
i s  compared w i t h  t h e  data from the  region of t h e  bypass s l o t s  ( f ig .  5 ( f ) ) .  
This comparison i s  val id  since the  predicted amplitude r a t i o  of the  
lumped-parameter analysis i s  constant throughout t he  configuration. 
short-pipe amplitude-ratio data (best seen i n  f i g .  5 ( f ) )  did not decrease 
s ignif icant ly  below 1 up t o  22 cycles per second, while the prediction 
a t  22 cycles per second w a s  only 0.28. 

Because t h e  amplitude-ratio data from the  normal-shock region 

The 

Even though there is  less  volume ahead of t he  compressor face than 
there  is  i n  the small pipe, t he  dynamics of t he  engine-inlet configura- 
t i o n  ( f i g .  5 ( g ) )  are very similar t o  those of the  long pipe and are almost 
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i den t i ca l  t o  those of the  intermediate. 
not be considered a choke point. 
ending a t  the  compressor face, o r  i t s  volume can be considered t o  be 
par t  of t h e  system used for  prediction. 

Therefore, the  engine face can- 
The engine must, then, damp the  system 

The response of the  in l e t  in combination with the  engine is  cornpazed 
with t h a t  calculated by using d i f f i se r -ex i t  conditions and four different  
volumes. These volumes included t h e  diffuser and bypass volume, and the  
engine volume obtained the  following four ways: 
equivalent volume assuming constant A€' throughout the  engine, ( 2 )  cal-  
culation of an equivalent volume assuming constant AP/P, ( 3 )  uncorrected 
engine volume, &d (4 )  no engine volume a t  a l l .  
t he  calculation fo r  the  equivalent engine volumes and a t ab le  of the  time 
constants for  a l l  four volumes a re  given i n  appendix B. 

(1) calculation of an 

Further description of 

Comparison of these curves indicates t h a t  the phase s h i f t  of the 
lumped-parameter system i s  not very sensit ive t o  the  t i m e  constant. 
time constant changes by a factor  of almost 3 t o  1 between t h e  extremes 
of the  four  cases, with a corresponding m a x i m u m  difference i n  phase s h i f t  
of only 25'. The amplitude r a t io ,  however, is more sensi t ive t o  the t i m e  
constant. 
t i o n  of a constant 

The 

For the engine dynamics, the prediction based on the  assump- 
AF' throughout t h e  configuration f i t s  the data best .  

I n  reference 1, the  response of a s t a t i c  pressure a t  the normal 
shock i n  t h e  long-pipe configuration was reported t o  be equal t o  dead 
time only. The obvious discrepancy between those r e su l t s  and present 
data can be at t r ibuted t o  two factors: 
the f a c t  t h a t  the  reference data were for subcr i t ica l  i n l e t  operation 
while t he  present data are for  supercr i t ical  operation. 

the  pressure sensing probe, and 

The pressure sensing probe of reference 1 was a free-stream s t a t i c  
probe projecting ahead of the cowl l i p ,  which measured a s tep  change i n  
pressure when crossed by the  shock. Therefore, the  amplitude r a t i o  meas- 
ured by such a probe i s  always 1. 
the  present investigation, and because of  boundary-layer effects  the  
s t a t i c  pressure w a s  a continuous f'unction of shock position. The ampli- 
tude r a t i o  f o r  the  w a l l  s t a t i c  was therefore a function of the amplitude 
of shock osci l la t ion.  

A wall s t a t i c  o r i f i ce  was used fo r  

The second factor  i n  the discrepancy i n  dynamics between reference 1 
and the present report i s  tha t  the  response of the  pressure i n  the  d i f -  
fuser and cold pipe is  different for  subcri t ical  and supercr i t ica l  opera- 
t ion.  For steady-state supercr i t ica l  operation, a change i n  bypass 
position r e su l t s  i n  a sizable change i n  diffuser-exit  pressure because 
of a change i n  pressure recovery. 
bypass movement causes l i t t l e  change i n  pressure but e f fec ts  a change i n  
i n l e t  m a s s  flow. 

For steady-state subcr i t ica l  operation, 
R 

A t  the  start of a t ransient ,  however, t h e  diffuser 

-. 
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pressure i n  both t h e  subc r i t i ca l  and supe rc r i t i ca l  cases would respond 
t o  a bypass area change a t  t he  same rate  u n t i l  t he  e f f ec t  of shock move- 
ment i s  f e l t  at the  diffuser ex i t .  For subc r i t i ca l  operation t h i s  would 
tend t o  cause the  shock t o  overshoot after only the  dead t i m e  has elapsed, 
and thus pass the  pressure probe. 
d ica te  only dead time fo r  subc r i t i ca l  operation, whereas the phase s h i f t  
f o r  supercr i t ica l  operation would include both dead t i m e  and d i f fuser  
lag (see appendix B )  . 

Therefore, t h e  phase s h i f t  would in -  

Spike Oscil lation 

Reference 7 reports t he  charac te r i s t ics  of a control f o r  t h e  spike 
of t h i s  i n l e t  tha t  used t h e  s t a t i c  pressure i n  t h e  terminal-shock region. 
The response of t ha t  control was dependent on t h e  diffuser dynamics f o r  
spike movement, f o r  which data a re  presented i n  f igure  6. The m a s s  r a te  
of a i r  entering the  i n l e t  and the  flow =ea at t h e  shock posit ion both 
change with spike movement and cause pressure changes throughout t h e  con- 
f igurat ion.  Both of  these changes a f fec t  t h e  shock position d i r ec t ly  
because of loca l  Mach number changes, and a l so  ind i rec t ly  through changes 
i n  t h e  plenum s t a t i c  pressure required t o  match the  i n l e t  mass flow with 
t h a t  of t h e  choked ex i t .  

For spike osc i l la t ion ,  t he  phase s h i f t  i n  t h e  normal-shock region 
increases t o  a m a x i m u m  and then remains constant fo r  higher frequencies. 
The s ize  of t he  cold pipe seems t o  affect  t h e  frequency at which t h e  
maximum phase s h i f t  i s  reached but has l i t t l e  e f fec t  on the  f i n a l  value. 
This can be  seen i n  f igures  6(a)  and ( d ) ,  where a m a x i m u m  phase s h i f t  of 
about 50° and 60° i s  reached a t  6 and 1 2  cycles per second i n  t h e  long 
and intermediate pipes, respectively. 
s h i f t  of 60' i s  not reached i n  t he  short-pipe data u n t i l  approximately 
20 cycles per second ( the l i m i t  of t h e  data) ,  so  it cannot be determined 
whether t h i s  i s  a maximum. The phase s h i f t s  a t  the bypass and choke-point 
locations f o r  t h e  long pipe a re  shown i n  f igures  6 ib)  and ( c )  and a re  
s i m i l a r  t o  the  bypass-oscillation data. This indicates  t h a t  t h e  dynamics 
of t h e  volume i n  the  diffuser  and cold pipe a re  more predominant i n  t h i s  
region, as might be expected. 

I n  f igure  6(e) ,  however, a phase 

Although there  i s  a great deal of s c a t t e r  i n  t h e  amplitude-ratio 
data,  it can be discerned t h a t  a peak occurs i n  t h e  normal-shock region 
data ( f igs .  6 (a) ,  (d ) ,  and ( e ) )  fo r  t h e  long and short  cold-pipe con- 
f igurat ions at about 15 cycles per second; and t h e  amplitude r a t i o  does 
not drop s ignif icant ly  below 1 f o r  any of t h e  intermediate cold-pipe 
configurations up t o  the l i m i t  of the  data.  This i s  qui te  d i f fe ren t  
from the bypass-oscillation case where t h e  amplitude r a t i o  dropped t o  
approximately 0.4 a t  20 cycles per second. 
choke-point o r i f i c e  f o r  spike osc i l l a t ion  ( f i g .  6 ( c ) )  i s  very s i m i l a r  

The amplitude r a t i o  f o r  t h e  



t o  the  bypass data up t o  a frequency o f  9 cycles per second, above which 
it shows t h e  peak or resonance exhibited i n  the  normal-shock o r i f i c e  
.data. 

The dynamics of the engine configuration ( f ig .  6(f)) a r e  again very 
s imilar  t o  those of the intermediate-pipe configuration ( f i g .  6( d) ) . 
Tne phase sh i f t  increases t o  50' a t  9 cycles per second and then remains 
r e l a t ive ly  constant t o  18 cycles per second. 
shows no tendency t o  drop below 1. 

The amplitude r a t i o  a l s o  

Probably t h e  most important conclusion tha t  can be  made about t he  
dynamic data for  spike osc i l la t ion  i s  tha t  it i s  considerably different  
from the  dynamics measured f o r  bypass osci l la t ion.  It is hypothesized 
t h a t  t h i s  difference i s  due mainly t o  the  r e l a t ive  location of t he  d i s -  
turbance i n  the  system and not t o  t h e  type of disturbance. If t h i s  is  
the  case, then the  system derived i n  the appendix i s  applicable only f o r  
t h e  case where t h e  bypass i s  located well downstream of t h e  normal-shock 
posit ion i n  the  diff'user. 

SUMMARY OF RESULTS 

An external-compression i n l e t  designed fo r  Mach 2.0 w a s  t es ted  i n  
conjunction with a J34 engine and a cold pipe successively choked a t  
three s ta t ions.  The i n l e t  centerbody and bypass w e r e  osci l la ted,  and 
the  response of s t a t i c  pressure near t h e  terminal shock, diff'user s l o t s  
f o r  bypass air, and cold-pipe choke point was  measured with the  follow- 
ing r e s u l t s  : 

1. The phase s h i f t  of the static-pressure variations i n  t h e  short, 
intermediate, and long cold pipes f o r  bypass osc i l la t ion  could be f a i r l y  
w e l l  predicted by use of a dead t i m e  i n  s e r i e s  with a f i r s t -order  l a g .  
The predicted amplitude r a t i o  agreed with t h e  trends observed f o r  a l l  
but the'  short  -pipe configuration. 

2. The response of t h e  diffuser with t h e  engine was almost ident ica l  
t o  the response with the intermediate pipe f o r  both spike and bypass 
osci l la t ion.  Using a corrected engine volume i n  the prediction method 
gave a curve t h a t  f i t  the data as well as the predictions f o r  the long 
and intermediate cold-pipe configurations. 

3. The spike-oscil lation data  were qui te  a b i t  d i f fe ren t  from the 
bypass-oscillation data. 
normal-shock region f o r  most configurations increased t o  a maximum value 
and remained approximately constant t o  the l i m i t  of t h e  data. 
pipe data did not conclusively show th i s  t rend because of the limited 

The phase sh i f t  of t h e  s t a t i c  pressure i n  the  

* The short-  
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range of the data. 
t he  m a x i m u m  phase s h i f t  was reached but had only a minor e f f ec t  on t h i s  
maximum value. 

The pipe length determined t h e  frequency at which 

-. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, February 17, 1959 
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APPENDIX A 

SYMBOIS 

flow area, sq ft 

speed of sound, ft/sec 

gain 

constant 

/of (t d t  
0 

Mach number 

steady-state mass flow, slugs/sec 

s t a t i c  pressure, lb/sq f't 

universal gas constant, 1718 (Ft-lb)/(slug)(%) 

Laplacian operator 

s t a t i c  temperature, OR 

time, sec 

dead time, sec 

volume of configuration, cu f t  

angle of attack, deg 

ra t io  of specific heats 

spike-position parameter (angle between i n l e t  centerline and 
l i n e  connecting spike t i p  and cowl l i p ) ,  deg 

density, slugs/cu ft 

time constant, sec 

vmiat ion from steady-state value 
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Subscripts : 

0 stagnation conditions 

1 i n l e t  shock position 

2 diffuser  ex i t  

3 cold-pipe ex i t  choke point 

Superscript : 

* sonic conditions 
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DERIVA'I'ION AND METHOD OF INLET DYNAMIC PREDICTION 
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The prediction of i n l e t  dynamics is divided in to  two parts, as was 
done i n  reference 3 i n  deriving the dynamics of a ramjet engine: the 
dynamics of a lumped-parameter system, and a dead t i m e  based on t h e  
transport  time of a pressure disturbance from the  bypass t o  the  point 
of pressure measurement. I n  the  lumped-parameter system of analysis, 
it i s  assumed tha t  the properties of t h e  system are  a function of t i m e  
only, and not a function of position within the  in l e t .  The dead time 
then accounts fo r  property changes with position. For t h i s  par t icular  
analysis, it is  assumed tha t  the  flow in to  the  i n l e t  i s  constant ( the 
in l e t  operates supercr i t ical ly)  and that  the volume from t h e  terminal 
shock t o  the  choked ex i t  s tores  mass a t  a r a t e  t ha t  is  a f'unction of 
diffuser-exit  conditions. When analyzing the  lumped-parameter system, 
the  fur ther  simplifying assumption of combining the bypass and the  plug 
i s  m a d e ,  s ince the properties are the s a m e  throughout the system and 
are  dependent on time only. The dead time, however, is  s t i l l  calculated 
from t h e  bypass position. Small perturbations are  assumed t o  allow the  
equations t o  be linearized. 

Then, equating the  difference i n  i n l e t  and ex i t  flows t o  the  mass 
storage i n  perturbation form (steady-state value plus a perturbation, 
m3 + bm3) and noting tha t  ml = m3 gives 

From one-dimensional isentropic flow theory, the  following equation can 
be writ ten fo r  t he  choked exit: 

K1P2A3 m3 = 
-a 

Solving f o r  t h e  effect  of perturbations i n  pressure, temperature, and 
area from the  steady-state conditions gives 

The equation of s t a t e  and the  equation f o r  the speed of sound are  com- 
bined t o  obtain: 



............... ....... . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . . .  
om 0 .0  12 

Combining equations (B3) and (B4) gives 

+ 1 m3 m3 

2 Y  P2 *3 
Am3 = Y - Ap2 + - aA3 

If  the volume V i s  assumed t o  be constant and t h e  equation f o r  
t h e  speed of sound i s  used, then 

Then, combining equations ( B l ) ,  (B5), and (B6) and solving f o r  
i n  terms of LA3 gives 

Ap2 

y + 1 m 3  ap2 v *p2 m3 

A3 
- - - - -  - m3 - -  

2Y P2 yRT2 d t  

By taking t h e  Laplace transforms and rearranging terms, t h e  follow- 
ing equation i s  obtained: 

S 
2P2V 

(y  + l)m3RT2 1 +  
i q q =  - 

Equation (B8) i s  f o r  a f i r s t -order  system where the  gain and time con- 
s t an t s  are 

and 

The Laplace transformation fo r  a time function including dead t i m e  is  

- t ds  
L m(t - td) = e AP(S 1 
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Combining the  dead t i m e  and the  lumped-pasameter transformations gives 

Config- Time constant, 
uration =, 
volume, s ec 

v, 
cu f t  

I w 

- - 
AA3(s) 1 + = s  3 

In t h e  following t ab le  the time constants and dead t i m e s  are pre- 
sented fo r  t he  in l e t  operating c r i t i c a l l y  a t  Mach 1.8 with the  spike 
positioned at 01 = 45'. The cold-pipe-configuration time constants 
were determined by using the  diffuser-exit  conditions and the sum of the  
volumes of the diffuser,  bypass, and c o l d  pipe. For the engine con- 
figuration, four t i m e  constants were calculated by using the  diffuser- 
ex i t  conditions, t he  sum of the  diffuser and bypass volumes, and the  
engine volume t reated by four different methods. Two of the  methods 
used attempted t o  correct t h e  engine volume t o  an equivalent volume at 
diffuser-exit  conditions having an equal storage capacity. The assump- 
t ions  used f o r  these two methods were tha t  Ap was constant throughout 
t h e  engine, making the  correction factor (Ap/Ap2) inversely proportional 
t o  t h e  loca l  temperature, and tha t  
t h e  correction factor  is  proportional t o  the  r a t i o  of t he  loca l  density 
t o  the  s t a t ion  2 density. 
culated f o r  comparison and used both t h e  uncorrected engine volume and 
no engine volume a t  a l l .  

Ap/p was constant, i n  which case 

The t h i r d  and fourth t i m e  constants w e r e  cal-  

Lumped-pameter t i m e  constants 

[Diff'user volume, 8.41 cu f t ;  bypass volume, 4.58 cu f t ;  
To = 584' R; M2 = 0.30; A3 = 1.175 Sq ft.] 

Configuration 

Long cold pipe 
Intermediate cold pipe 
Short cold pipe 
Engine 
Engine, Ap = constant 
Ehgine, Ap/p = constant 
Diffuser and bypass 

~~ 

21.49 
13.99 
4.07 
14.69 
8.86 
21.77 

, 38.48 
26.98 
17.06 
27.68 1 21.85 

' 34.76 

0.0341 
.0267 
.0169 
.0274 
.0216 
.0344 

0.00 I 12.99 I 0.0129 



The dead time w a s  calculated by graphically integrating a plot  of 
t h e  reciprocal of t h e  vector SUE of t h e  pressure-wave veloci ty  and t h e  
stream velocity against posit ion i n  t h e  i n l e t .  The wave i s  assumed t o  
t r a v e l  i n  t he  annular bypass t o  a horizontal plane through t h e  i n l e t  
centerline before entering the  main duct. The following t a b l e  presents 
t h e  dead t i m e s  calculated i n  t h i s  manner: 

- 

Configuration 

Long 
Medium 
Short 

Dead time from bypass t o  t h e  three  static-pressure o r i f i ce s  

Normal-shock Bypass or i f i ce ,  Choke point 
o r i f i ce ,  sec o r  i f  ice ,  

see sec 
0.0108 0.00402 0.00815 
.0108 .00402 .00647 
.0108 .00402 .00474 
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Figure 3. - Typical optical  recorder trace. 
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(a) Long-pipe configuration, normal-shock region. 

Figure 5. - Dynamic response of static pressures to bypass oscillation. 
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( b )  Long-pipe conf igura t ion ,  near  bypass s l o t s .  

Figure 5. - Continued. Dynamic response of s t a t i c  p re s su res  
t o  bypass o s c i l l a t i o n .  
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( c )  Long-pipe configuration, choke point.  

Figure 5. - Continued. Dynamic response of s t a t i c  pressures  t o  
bypass osc i l l a t ion .  
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(d) Intermediate-pipe configuration, normal-shock region. 

Figure 5. - Continued. Dynamic response of static pressures to 
bypass os c illat ion. 
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( e )  Short -pipe configuration, normal-shock region. 

Figure 5. - Continued. Dynamic response of s t a t i c  pressures t o  
bwass osci l la t ion.  
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(f) Short-pipe configuration, near bypass slots. 

Figure 5. - Continued. Dynamic response of static pressures to 
bypass oscillation. 
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Figure 5. - Concluded. Dynamic response of static pressures to 
bypass oscillation. 
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( a )  hng-pipe configuration, normal-shock region. 

Figure 6. - Dynamic response of s t a t i c  pressures t o  spike 
osci l la t ion.  
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(b) Long-pipe configuration, near bypass slots .  

Figure 6. - Continued. Dynamic response of s t a t i c  pressures 
t o  spike oscil lation. 
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(e) Long-pipe configuration, near choke point. 

Figure 6. - Continued. Dynamic response of static pressures 
to spike oscillation. 
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1 2 3 4  6 8 10 20 30 
Spike oscillation frequency, cps 

( d) Intermediate-pipe configuration, normal-shock region. 

Figure 6. - Continued. Dynamic response of static pressures 
to spike oscillation. 
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(e ) Short -pipe configuration, normal-shock region. 

Figure E. - Continued. Dynamic response of static pressures 
to spike oscillation. ' 
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( f )  Engine configuration, normal-shock region. 

Figure 6. - Concluded. Dynamic response of s t a t i c  pressures 
t o  spike oscil lation. 
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